Connect with us
  • Elysium

News

COVID cognitive impairment ‘equivalent to 20 years’ ageing’

People affected by serious cases of the virus can lose the equivalent of 10 IQ points, with recovery “at best gradual”

Published

on

Cognitive impairment as a result of severe COVID-19 is similar to that sustained between 50 and 70 years of age and is the equivalent to losing ten IQ points, a new study has revealed. 

The results of the study, by scientists from the University of Cambridge and Imperial College London, suggest the effects are still detectable more than six months after the acute illness, and that any recovery is at best gradual.

There is growing evidence that COVID-19 can cause lasting cognitive and mental health problems, with recovered patients reporting symptoms including fatigue, ‘brain fog’, problems recalling words, sleep disturbances, anxiety and even post-traumatic stress disorder (PTSD) months after infection. 

In the UK, a study found that around one in seven individuals surveyed reported having symptoms that included cognitive difficulties 4.5 months after a positive COVID-19 test, even in mild cases.

While even mild cases can lead to persistent symptoms, between a third and three-quarters of hospitalised patients report still suffering cognitive symptoms three to six months later.

To explore this link in greater detail, researchers analysed data from 46 individuals who received in-hospital care, on the ward or intensive care unit, for COVID-19 at Addenbrooke’s Hospital, part of Cambridge University Hospitals NHS Foundation Trust. 

Sixteen patients were put on mechanical ventilation during their stay in hospital. All the patients were admitted between March and July 2020 and were recruited to the NIHR COVID-19 BioResource.

The individuals underwent detailed computerised cognitive tests an average of six months after their acute illness using the Cognitron platform, which measures different aspects of mental faculties such as memory, attention and reasoning. 

Scales measuring anxiety, depression and post-traumatic stress disorder were also assessed. Their data were compared against matched controls.

This is the first time that such rigorous assessment and comparison has been carried out in relation to the after effects of severe COVID-19.

COVID-19 survivors were less accurate and with slower response times than the matched control population – and these deficits were still detectable when the patients were following up six months later. 

The effects were strongest for those who required mechanical ventilation. 

By comparing the patients to 66,008 members of the general public, the researchers estimate that the magnitude of cognitive loss is similar on average to that sustained with 20 years of ageing, between 50 and 70 years of age, and that this is equivalent to losing ten IQ points.

Survivors scored particularly poorly on tasks such as verbal analogical reasoning, a finding that supports the commonly-reported problem of difficulty finding words. 

They also showed slower processing speeds, which aligns with previous observations post COVID-19 of decreased brain glucose consumption within the frontoparietal network of the brain, responsible for attention, complex problem-solving and working memory, among other functions.

Professor David Menon from the Division of Anaesthesia at the University of Cambridge, the study’s senior author, said: “Cognitive impairment is common to a wide range of neurological disorders, including dementia, and even routine ageing, but the patterns we saw – the cognitive ‘fingerprint’ of COVID-19 – was distinct from all of these.”

While it is now well established that people who have recovered from severe COVID-19 illness can have a broad spectrum of symptoms of poor mental health – depression, anxiety, post-traumatic stress, low motivation, fatigue, low mood, and disturbed sleep – the team found that acute illness severity was better at predicting the cognitive deficits.

The patients’ scores and reaction times began to improve over time, but the researchers say that any recovery in cognitive faculties was at best gradual and likely to be influenced by a number of factors including illness severity and its neurological or psychological impacts.

Professor Menon added: “We followed some patients up as late as ten months after their acute infection, so were able to see a very slow improvement. 

“While this was not statistically significant, it is at least heading in the right direction, but it is very possible that some of these individuals will never fully recover.”

There are several factors that could cause the cognitive deficits, say the researchers.

Direct viral infection is possible, but unlikely to be a major cause; instead, it is more likely that a combination of factors contribute, including inadequate oxygen or blood supply to the brain, blockage of large or small blood vessels due to clotting, and microscopic bleeds. 

However, emerging evidence suggests that the most important mechanism may be damage caused by the body’s own inflammatory response and immune system.

While this study looked at hospitalised cases, the team say that even those patients not sick enough to be admitted may also have tell-tale signs of mild impairment.

Professor Adam Hampshire from the Department of Brain Sciences at Imperial College London, the study’s first author, said: “Around 40,000 people have been through intensive care with COVID-19 in England alone and many more will have been very sick, but not admitted to hospital. 

This means there is a large number of people out there still experiencing problems with cognition many months later. 

“We urgently need to look at what can be done to help these people.”

Professor Menon and Professor Ed Bullmore from Cambridge’s Department of Psychiatry are co-leading working groups as part of the COVID-19 Clinical Neuroscience Study (COVID-CNS) that aim to identify biomarkers that relate to neurological impairments as a result of COVID-19, and the neuroimaging changes that are associated with these.

News

Royal Rehab opens Australia’s largest technology centre

The centre caters for people living with disabilities across the country

Published

on

Royal Rehab, Australia’s not-for-profit provider of rehabilitation and disability support services, opens the country’s largest technology centre, providing Australians with access to a comprehensive range of technology.

Royal Rehab’s Advanced Technology Centre is a purpose-built hub designed to improve the rehabilitation outcomes of people impacted by life changing illnesses or injuries. The centre also caters for people living with disabilities, by providing expert support and access to technologies that aim to improve function, strength and wellbeing and is the largest of its kind in Australia.

The C-Mill VR+ technology combines a treadmill with body weight supports and virtual and augmented reality to improve balance, gait, and gait adaptability in a controlled environment. The device provides a safe and comfortable training environment that mimics the challenges of real-life, helping users to navigate situations like walking in crowded areas and avoiding obstacles.

The centre is also home to a Zero G Gait and Balance System, which has the longest walking track in the country. This device is a robotic body weight support that is designed to assist those affected by spinal cord injuries, brain injuries, neurological conditions and degenerative conditions to walk.

It allows falls prevention training to minimise patient risk, so they can focus on regaining their confidence in walking, balancing, climbing stairs and manoeuvring from sitting to standing positions.

Matt Mackay, CEO of Royal Rehab, believes technology can play a significant role in unlocking better patient outcomes and that the opening of Royal Rehab’s Advanced Technology Centre will make innovative technology more accessible.

“We know that the use of technology in combination with traditional therapies has the potential to drive better outcomes,” he says. “This will revolutionise the rehabilitation pathway for many patients, which in turn can lead to dramatic changes in a person’s quality of life.

“Our Advanced Technology Centre provides Australians with the opportunity to access potentially life-changing devices, many of which have never been accessible in Australia until now. We are delighted to be able to provide patients access to emerging advanced technologies that has the potential to accelerate rehabilitation progress and help people to improve their function, mobility and strength, the CEO adds.

“We want to provide people living with a long-term disability access to these technologies, so they too can benefit from improved strength and fitness, and maintain or even improve their functional independence.”

Jason Redhead, senior physiotherapist and technology lead at Royal Rehab, says that the centre offers Australian patients exclusive access to advanced technologies that will provide greater opportunities to achieve their rehabilitation goals, adding: “We have seen that advanced technology is starting to play a leading role in rehabilitation programs in many other countries.

“We want to ensure Australians too can access the best technology, like robotic exoskeletons, body weight support systems, upper limb robotics and virtual reality technologies. This means we will see more patients achieve more in their rehabilitation goals.”

The centre operates under the Royal Rehab LifeWorks banner, which provides Australians with access to a multidisciplinary team of allied health clinicians who work together with patients and clients on their individualised goals to develop integrated therapy and wellness programmes.

Royal Rehab’s Advanced Technology Centre is located at their Ryde location and will open its doors on July 1. Access to the centre is covered under a range of funding options, including NDIS, iCare, and self-funding.

Continue Reading

News

Neuro Convention returns next week

The event brings together neuro-rehab professionals and leading organisations from across the UK

Published

on

Neuro-rehab professionals and organisations will be attending one of the key dates in the sector calendar next week – Neuro Convention 2022. 

The event showcases the latest technology and innovations in the neurological sector, with the goal of improving patient outcomes. 

Neuro Convention, held on Wednesday and Thursday at the NEC Birmingham, will focus on four key areas – rehabilitation, mental health, diagnostics and brain and spinal injury. 

The free event includes a programme of more than 50 free CPD-accredited seminars, hosted by leading experts from across neuro-rehab, as well as interactive workshops hosted by the specialist neuro-rehab team at the University of Plymouth. 

Technology will also be showcased, with a programme of live demonstrations, to show how the latest innovation can benefit people’s lives. 

More than 50 exhibitors will also be in attendance, including the team from NR Times, who can be found on stand N-G3. 

Neuro Convention will be co-located with Naidex and UK Care Week within the NEC, highlighting the shared dedication of all three events to improve mobility and the technology introduced to support independent living.

Deborah Johnson, editor of NR Times, who will be attending Neuro Convention, said: “Neuro Convention is known as being one of the must-attend events in the neuro-rehab calendar, and 2022 looks to be another excellent event, with a packed programme of speakers and workshops and an array of leading exhibitors. 

“It’s absolutely fantastic that the opportunities for the neuro-rehab sector to come together again in person are returning, and I’m personally looking forward to meeting as many people as possible – those who are new to NR Times, others who are old friends, and those who to date we have only met via Zoom!” 

Tickets are free and to register, visit here. 

SHOW INFO 

Dates & Times 

Wednesday 6th July 2022 | 09:30 – 16:30

Thursday 7th July 2022 | 09:30 – 16:00 

Venue Address 

Hall 19

National Exhibition Centre (NEC)

Birmingham

B40 1NT, UK

Social links #NeuroCon

https://www.facebook.com/neuroconvention

https://twitter.com/NeuroConvention

https://www.linkedin.com/company/european-neuro-convention/

Continue Reading

News

Role of sleep in memory and learning uncovered

Research findings could aid development of assistive tools for people with neurological injury or disease

Published

on

New research into sleep may help explain how memories are formed and how learning is consolidated, and could aid the development of assistive tools for people affected by neurological injury or disease. 

Scientists previously studying laboratory animals discovered a phenomenon known as ‘replay’ that occurs during sleep – a strategy the brain uses to remember new information. 

Scientists believe that this replay of neuronal firing during sleep is how the brain practices newly-learned information, which allows a memory to be consolidated, and converted from a short-term memory to a long-term one. 

However, replay has only been convincingly shown in lab animals.

Now, a new study has investigated whether replay occurs in the human motor cortex — the brain region that governs movement — focusing on a 36-year-old man with tetraplegia who cannot move his upper and lower limbs due to a spinal cord injury. 

The man, identified in the study as T11, is a participant in a clinical trial of a brain-computer interface device that allows him to use a computer cursor and keyboard on a screen.

The investigational device being developed by the BrainGate consortium, a collaborative effort involving clinicians, neuroscientists and engineers at several institutions with the goal of creating technologies to restore communication, mobility, and independence for people with neurologic disease, injury, or limb loss.

In the study, T11 was asked to perform a memory task similar to the electronic game Simon, in which a player observes a pattern of flashing coloured lights, then has to recall and reproduce that sequence. 

He controlled the cursor on the computer screen simply by thinking about the movement of his own hand. Sensors implanted in T11’s motor cortex measured patterns of neuronal firing, which reflected his intended hand movement, allowing him to move the cursor around on the screen and click it at his desired locations. 

These brain signals were recorded and wirelessly transmitted to a computer.

That night, while T11 slept at home, activity in his motor cortex was recorded and wirelessly transmitted to a computer.

“What we found was pretty incredible,” said Dr Daniel Rubin, lead author and a neurologist at the MGH Center for Neurotechnology and Neurorecovery. 

“He was basically playing the game overnight in his sleep.

“This is the most direct evidence of replay from motor cortex that’s ever been seen during sleep in humans.”

Most of the replay detected in the study occurred during slow-wave sleep, a phase of deep slumber. 

Interestingly, replay was much less likely to be detected while T11 was in REM sleep, the phase most commonly associated with dreaming. 

The researchers see this work as a foundation for learning more about replay and its role in learning and memory in humans.

“Our hope is that we can leverage this information to help build better brain-computer interfaces and come up with paradigms that help people learn more quickly and efficiently in order to regain control after an injury,” said neurologist Dr Sydney S. Cash, co-director of the Center for Neurotechnology and Neurorecovery at MGH.

Continue Reading

Newsletter

Sign up for the NR Times newsletter
I would like to receive by email other offers, promotions and services from Aspect Publishing Ltd and its group companies.*

Trending