Connect with us
  • Elysium

Stroke news

Investigator files invention disclosure for new stroke treatment



An investigator has filed an invention disclosure, part of a provisional patent application with the United States Patent and Trademark Office, for a new stroke treatment.

Liqin Zhao, KU associate professor of pharmacology & toxicology and investigator at the Life Span Institute, has carried out research on the human ApoE gene for years. A major focus of her work focuses on how the ApoE2 variant — one of three major isoforms of ApoE gene — might protect people from Alzheimer’s disease.

Now, based upon a discovery made during her Alzheimer’s-disease work, Zhao is patenting a way to leverage rhApoE2 to regulate blood lipids. Lipids, like fats and oils, are building materials of life at the cellular level that also are tied to heart disease and other metabolic diseases.

Zhao, says: “In essence, we found that rhApoE2 significantly lowered blood levels of a number of ceramides.

“Moreover, rhApoE2 increased blood levels of a variety of ‘good triglycerides’ — triglycerides that contain health-promoting, long-chain polyunsaturated fatty acids such as alpha-linolenic acid, EPA and DHA, and lowered levels of ‘bad triglycerides,’ or triglycerides that contain saturated or monosaturated fatty acids that can impose a cardiovascular risk.”

More and more, ceramide levels in the blood are seen by medical researchers and clinicians as a promising predictor of heart disease, and has the potential to be a more useful metric than cholesterol readings. For example, the Mayo Clinic recently started using a blood test to quantify plasma ceramides as a new biomarker of cardiovascular risk prediction.

During a two-month experiment, Zhao, along with her team treated mice genetically altered to have aged vascular and neurological symptoms. They treated mice intravenously with rhApoE2, collected serum samples and then blindly evaluated them with a lipidomics analysis using advanced mass-spectrometry.

Zhao, says: “The results were completely unexpected.

“The lipidomics study was meant to determine whether a two-month intravenous exposure to rhApoE2 would cause any type of lipid dyshomeostasis (disruption of biological balance). We were pleasantly surprised to see that rhApoE2 not only did not induce a hyperlipidemic risk profile, but the treatment significantly improved the circulating lipidome of aged ApoE4 mice.”

Zhao says the effect of rhApoE2 is unique, surpassing treatments available currently to patients at risk of heart disease.

“Currently no drugs have the capacity to systematically alter the circulating lipidome like what rhApoE2 has shown us.

“It’s very exciting to envision that rhApoE2 may have the potential to fundamentally transform the treatment of metabolic diseases. In future studies, we’ll need to address what might be the underlying biological basis that led to these effects from rhApoE2. It’s probable that unknown factors, in addition to low-density lipoprotein receptors, may be involved in the dynamic regulation of the metabolism of those lipid classes.”

The promise of ApoE2 as a treatment for human health goes beyond regulating levels of lipids in the blood. Zhao and her team filed a separate provisional patent application last November based on use of rhApoE2 to prevent and treat Alzheimer’s disease.