Magnetic sensor could detect early signs of TBI

By Published On: 24 November 2020
Magnetic sensor could detect early signs of TBI

Signs of traumatic brain injury, dementia and schizophrenia could be detected at an earlier stage as a result of the development of a new sensor which measures weak magnetic signals in the brain.

Through the development of the new Optically Pumped Magnetometer (OPM) sensor, scientists are hopeful of enabling a greater understanding of connectivity in the brain, which could have significant benefits in the chances of early diagnosis.

The device, developed by teams of scientists at the University of Birmingham, is currently in trail stage and clinicians at the Queen Elizabeth Hospital Birmingham are involved in its use in pinpointing the site of TBIs.

Its potential to increase diagnostics for neurological injury, neurological disorders such as dementia, and psychiatric disorders such as schizophrenia, has been widely recognised, and the team are now seeking commercial and research partnerships to help advance its development further.

The new sensor has enabled advances in detecting brain signals and distinguishing them from background magnetic noise, when compared to commercially available sensors. By using polarised light, the device can detect changes in the orientation of spin atoms when exposed to a magnetic field.

The team was also able to reduce the sensor size by removing the laser from the sensor head, and made further adjustments to decrease the number of electronic components, in a move that will reduce interference between sensors.

Benchmarking tests have taken place at the University’s Centre for Human Brain Health, and has reported “good” performance in environmental conditions where other sensors do not work.

Specifically, the researchers showed that the new sensor is able to detect brain signals against background magnetic noise, raising the possibility of magnetoencephalography (MEG) testing outside a specialised unit or in a hospital ward.

The research – published in the ‘Detection of human auditory evoked brain signals with a resilient non linear optically pumped magnetometer’ report, Kowalczyk et al (2020) – was led by physicist Dr Anna Kowalczyk.

“Existing MEG sensors need to be at a constant, cool temperature and this requires a bulky helium-cooling system, which means they have to be arranged in a rigid helmet that will not fit every head size and shape,” she says.

“They also require a zero-magnetic field environment to pick up the brain signals. The testing demonstrated that our stand-alone sensor does not require these conditions.

“Its performance surpasses existing sensors, and it can discriminate between background magnetic fields and brain activity.”

The researchers expect these more robust sensors will extend the use of MEG for diagnosis and treatment, and they are working with other institutes at the University to determine which therapeutic areas will benefit most from this new approach.

Neuroscientist Professor Ole Jensen, who is co-director of the Centre for Human Brain Health (CHBH), highlighted the potential of the sensor.

“We know that early diagnosis improves outcomes and this technology could provide the sensitivity to detect the earliest changes in brain activity in conditions like schizophrenia, dementia and ADHD,” he says.

“It also has immediate clinical relevance, and we are already working with clinicians at the Queen Elizabeth Hospital to investigate its use in pinpointing the site of traumatic brain injuries.”

The team at the CHBH has also recently been awarded Partnership Resource Funding from the UK Quantum Technology Hub Sensors and Timing to further develop new OPM sensors.

Management during a pandemic: what we’ve learned
Could female footballers face greater dementia risk?